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ON THE NON-EXISTENCE OF E-UNIFORM FINITE 
DIFFERENCE METHODS ON UNIFORM MESHES FOR 

SEMILINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 

PAUL A. FARRELL, JOHN J. H. MILLER, EUGENE O'RIORDAN, AND 
GRIGORII I. SHISHKIN 

ABSTRACT. In this paper fitted finite difference methods on a uniform mesh 
with internodal spacing h, are considered for a singularly perturbed sermilinear 
two-point boundary value problem. It is proved that a scheme of this type 
with a frozen fitting factor cannot converge E-uniformly in the maximum norm 
to the solution of the differential equation as the mesh spacing h goes to zero. 
Numerical experiments are presented which show that the same result is true 
for a number of schemes with variable fitting factors. 

1. INTRODUCTION 

In this paper fitted finite difference methods on a uniform mesh are considered 
for a singularly perturbed semilinear two-point boundary value problem. Singularly 
perturbed differential equations are all pervasive in applications of mathematics 
to problems in the sciences and engineering. Among these are the Navier-Stokes 
equations of fluid flow at high Reynolds number, the drift-diffusion equations of 
semiconductor device physics [19], [10], the Michaelis-Menten theory for enzyme 
reactions [16], and mathematical models of liquid crystal materials and of chemical 
reactions [27]. 

The use of classical numerical methods for solving such problems may give rise 
to difficulties when the singular perturbation parameter E is small. In particular, 
methods based on centered differences or upwinded differences on uniform meshes 
yield error bounds, in the maximum norm, which depend on an inverse power of E. 
Similarly Brandt and Yavneh [1] demonstrated that anisotropic artificial viscosity 
in the first-order upwind finite difference scheme may result in inaccurate solutions, 
when c/h = 0(1), where h is the mesh width. Two alternative approaches may be 
taken to the resolution of this problem. Either additional information about the 
solution may be used to produce accurate efficient methods, which may involve a 
priori modification of the mesh or operator, or an attempt may be made to produce 
a Dostiori adaDtive methods or black box methods. 
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The latter approach leads to codes that are designed to handle a wider variety 
of problems than non-adaptive codes, usually at the expense of greater execution 
time. Moreover, such methods are less suitable than non-adaptive codes to imple- 
mentation in a pArallel environment. This is because the adaption process inherent 
in a posteriori methods, introduces sequentiality to the solution process, which is 
absent in the a priori case. The a priori approach uses physical or mathemati- 
cal knowledge about the problem to enhance the solution strategy. Such methods 
are widespread in the literature. These include fitted finite difference methods [2], 
finite element methods using special elements such as exponential elements [18], 
and methods which use a priori refined or special meshes [12]. Examples of these 
include methods for convection-diffusion problems devised by the British Central 
Electricity Generating Board [14], fluid flow in aerodynamics [3], semiconductor 
device physics [20], [5], [15], [13], chemical reactions [26], and hydrologic models for 
the Nash cascade model of flood routing [25]. 

It is of theoretical and practical interest to consider numerical methods for such 
problems, which exhibit E-uniform convergence, that is, numerical methods. for 
which there exists an NO, independent of E, such that for all N > NO, where N 
is the number of mesh elements, the error constant and rate of convergence in the 
maximum norm are independent of E. Thus a numerical method is said to be E- 
uniform of order p on the mesh QN= {xi, i = 0, 1,... , N} if there exists an NO 
independent of E such that for all N > NO 

sup max Iu(x)- UN(X)j < CN-P, 
0<E<1 QN 

where u is the solution of the differential equation, UN is the numerical approxima- 
tion to u, C and p > 0 are independent of E and N. 

Singularly perturbed boundary value problems for linear elliptic equations, which 
reduce for E = 0 to zero-order equations, were examined in [9], [21], [22], [23], [24]. 
For such problems E-uniform methods consisting of exponentially fitted finite dif- 
ference operators on uniform meshes were thoroughly investigated and applied suc- 
cessfully to ordinary differential equations in [2], [8] and to linear partial differential 
equations in [9], [21], [22], [23]. A sufficient condition for E-uniform convergence, for 
linear ordinary differential equations, is that the scheme be fitted with the appro- 
priate constant fitting factor in the region of the boundary layer. This was shown 
for the non-selfadjoint case in [4]. Schemes with constant exponential fitting factors 
(a special case of the frozen fitting factor schemes considered in this paper) for the 
linear self-adjoint problem were considered in [2, Chap. 10], and shown there to be 
E-uniform. 

The semilinear problem considered in this paper exhibits an exponential bound- 
ary layer, which is asymptotically similar in behavior to the layers arising in self- 
adjoint linear ordinary differential equations. It has been an area of speculation 
in the community, which considers c-uniformly convergent methods, whether re- 
sults of the type available widely in the literature for linear problems could also be 
obtained for nonlinear equations using fitted finite difference methods on uniform 
meshes. Previous attempts in this direction include schemes which are c-uniformly 
convergent in weaker norms, such as the t, and e2 norm (cf. Niijima [17]). The 
key issue in this paper is to show that, even in the case of this very simple non- 
linearity, c-uniform convergence cannot be achieved in the eO, norm using fitted 
finite difference methods on uniform meshes. 
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In this paper, it is shown that a general class of fitted finite difference methods 
on a uniform mesh, which includes well known exponentially fitted finite difference 
methods [2], are not c-uniform pointwise in the maximum norm for a singularly 
perturbed semilinear two-point boundary value problem. To be precise, in section 2, 
we shall prove this result for schemes with a frozen fitting factor. The fitting factor is 
said to be frozen if, at points xi in a neighborhood of the boundary layer at x = 0, 
it is determined by the quantities given at x = 0 alone. In section 3 numerical 
results are given, which indicate that this result holds not only for schemes with a 
frozen fitting factor but also for some standard fitted schemes from the literature, 
the fitting factors of which are not frozen. 

It should be noted however that the result does not indicate that fitted methods 
on non-uniform meshes cannot be c-uniform. In fact, in [7], numerical methods, 
c-uniform in the maximum norm, are constructed for a class of semilinear problems, 
using classical finite difference operators on special piecewise-uniform meshes. Thus 
c-uniform methods can be constructed on special piecewise-uniform meshes even 
though it is not possible on uniform meshes. 

2. THEORETICAL RESULT FOR FROZEN FITTING FACTORS 

In this section the class C of semilinear two-point boundary value problems on 
Q = (0,1) of the form 

(P)W J 621 C(U(x))U(x) - 0, x C Q, (F) u{(0) = 1, u(1) 0, 

are considered. Here c is a smooth function satisfying 

(2.1) c(u(x)) > a > 0, x C Q, 

and the singular perturbation parameter E satisfies E > 0. When E << 1 the 
solutions of such problems exhibit boundary layers in small neighborhoods of the 
boundary point x = 0. These boundary layers are the cause of significant numerical 
difficulties, some consequences of which are given in the theorem below. 

A finite difference method is considered on a uniform mesh QN I I 
where xi = ih, 0 < i < N and Nh = 1. On this mesh the standard second order 
central difference operator 62 is used to approximate the second-order derivative, 
where 62 is defined by: 

2w(x) - w(x(i+?) - 2w(xi) + w(xi-1) 

for any mesh function w. The discrete problem corresponding to continuous prob- 
lem (P) is then 

( 2 
y,62Z(X,)-C(Z(Xi))Z(Xi) = 0, Xi C QN, 

(Ph) 
( z(O) = 1, z(1) =0, 

where -yi is the fitting factor. In general, the fitting factor -yi is detvrmined at each 
point xi C QN by the quantities c, h, c(z(xi_j)), c(z(xi)) and c(z(xi+?)). The fitting 
factor is said to be frozen if, at points xi in a neighborhood of the boundary layer 
at x = 0, it is determined by the quantities c, h, c(z(O)) alone. 

The main theoretical result of this paper states that there is no fitted central 



606 P. A. FARRELL, J. J. H. MILLER, E. O'RIORDAN, AND G. I. SHISHKIN 

finite difference method (Ph) with a frozen fitting factor on a uniform mesh, whose 
solutions converge E-uniformly to the solution of problem (P). 

Theorem 2.1. Let u be the solution of any problem (P) in the class C and z 
the solution of the corresponding discrete problem (Ph) on the uniform mesh QN. 

Assume that the fitting factor -y depends continuously on its arguments and that it 
is frozen so that for all x C [0, 1/4), y(x) = y(, h, c(z(O))). Then, there is no choice 
of the fitting factor y for which the solutions of (Ph) converge c-uniformly to the 
solution u of (P), as N - oc for all problems (P) in C. 

Proof. The theorem is proved by assuming that it is false and then deriving a 
contradiction. Thus, it is assumed that for all problems (P) in C, there is an E- 
uniform fitted finite difference method (Ph) on the uniform mesh QN, with a frozen 
fitting factor such that y(x) = y(, h, c(z(O))) for all x E [0, 1/4), with -y depending 
continuously on its arguments. That is, there exists t = p(h), independent of E, 
such that lu(xi) - z(xi) ? <i'(h) where A(h) - 0 as h - 0. 

Under these assumptions it will be shown that for any choice of the fitting factor 
the error at the point x1, namely u(x1)-z(x1), does not converge to zero as N -oo 
for a sequence of problems in C for which eN is held constant. This provides the 
required contradiction. 

It suffices to consider problems in C corresponding to the following two choices 
of the coefficient c, 

(2.2) c =.c,(u(x)) = 2-s + su(x), s = 0, 1. 

The corresponding solutions of (P) and (Ph) are denoted by us and z5 respectively. 
It will be shown that either uo(x1) - zo(x1) or u1(x1) - z1(x1) does not converge 
to zero as N - oc for the sequence of problems with eN = 1. 

It is clear that the coefficient in (2.2) fulfills condition (2.1) for the linear problem 
corresponding to s = 0. That the same is true when 0 < s < 1 may be verified by 
a standard argument using the maximum principle. 

It is more convenient to work with the following auxiliary problems in the semi- 
infinite domain [0, oc) 

E2vs (x) 
- 

cs (V(x))vs (x) = 0, x E [0, oo), 

Vs(0) = 1, Vs (o) = 0- 

The exact solution of the linear problem corresponding to s = 0 is vo (x) = e - x 

Again, using a standard maximum principle argument, it is not hard to show that 
for 0 < s < 1 the solutions vs(x) satisfy 

(2.3) e- ? < vs(x) < e 2-s E1x x C [O, oc). 

Moreover, on the interval Q [0,1], the difference between the solution us and the 
solution vs of the corresponding auxiliary problem decreases as E -> 0 in the sense 
that 

(2.4) lus(x)-vs(x)I < v(E), x E Q, s = 0, 1, 

where v(E) -* 0 as E -* 0. 
Changing from x to the new variable 27(x) = x/e the auxiliary problems become 

wS' (n) -Cs (ws (n)( )w () = 0, ? C [0, oc), 

ws (0) = 1, ws (??) = 0, 
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where w (ri) = v,(x). Letting wQ(rq) denote the solution of this problem, the func- 
tion 3(s) is chosen to satisfy the difference equation 

O(s)6-ws (n)c (ws (O)W)w() = 0, 

at the point r1 =-1h. Since ws(O) =1 it follows that cs(ws(0)) = cs(1) = 2 for all 
O < s < 1 and 0(s) satisfies 

(2.5) (s)[62wS(27)] - 2ws(e) = 0, 

where e = E-1h. 
To obtain an approximate expression for 0(s) as a power series in e, the function 

ws(77) is expanded as a power series in r1 

00 

(2.6) Ws(27) 1 + E kr(s)?7r. 
r=1 

Then, by (2.5) and (2.6), 

2 2(1 ? Z01I kr (s)er) 
(2.7) /(s) 2 r( 

1 + ki(s)e + k2(S)e2 + 0(e3) 

k2(s) + 3k3(s)f + 7k4(s)f2 + Q(e3) 

Expressions for the functions kr(s) are now obtained by substituting the expansion 
of ws(77) into the differential equation satisfied by ws(77), namely 

W"1 (r) = (2 - s + sws (77) )ws (77), 

and so 

/ 00 \ 11 00 \ ~~ ~ ~~~~00 \ 

kr (s)r 2 2-s + s ? kr (S)r) (Z kr (s)rr 
r=0 r=0 r=0 

Equating coefficients of 1,?) and r12 on both sides and simplifying, the relations 

(2.8) k2(s)= 1, 6k3(s) (2 + s)ki (s), 12k4(s)= 2 + s + sk 2(s) 

are obtained. 
Writing ws(2f) = e(s), for some it(s), and expanding as a power series in e, 

we obtain 

WS(2e) =1?+E(-I) 

Comparing this with the expansion (2.6) when r1 2t, and using 4k2(s) = 1 from 
(2.8), it follows that 

(2.9) k(s) K(S) + 2( -2t+01(42). 2 4 
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Using (2.8) and (2.9), the expression (2.7) for f3(s) becomes 

l+[- K(S) + (K 2(s) _ 2,se]f+j2 + oy3) 
(s) 2~~~__ 2(s)4 

1?-2(2?+ s)[-K() ? (s (s) + 7 + ]2 + O(_3) 

= 1 _ -(2)+(-1 + 2St+ _2)f3]fl _ (2 + s) +(s)+ 
2 2 4 12 4 

=[1 _K(s) +1 2(s + O3)][I_[l (2 + s)s(s)f 
(-1? 4 

_(_ 5(2 + s) + (12 + 13s)s;2(s) )2 ? (e)- 
(f3)1 

12 48 

=___ _ 2 _ _+ {3+__ [I + (2?s + s(s)e + 
= (S)e ? (-1 () 

2 44 
5(2? s) =(12?- + 13s) 2{(S) 2 - (2? + S)22(S)2 ]3} 

12 48 

l f(0[ss 2 (S( 13s = 2 6 
6? 4 3 +4{ (?)?[k 12 ??)24 

1] 

?0(e3) 

1- ?s K {i(s) ?_[ - 7=2S) ? S2(S)} + O (e3) 

where 

It followsfrom (2.11 th ts (1) ) > nhs for al 7 ufcetysale 

(2.10) 1(s) 1- + {) ?- - > (S) ? } 

The following bounds for it(s) are obtained from (2.3) 

(2.11) 2 V2~-s <? ( s)< 2 v/ -. 

F(rom (2. 10) 

64 f,i -5 
72n1 ~2(1)] 

/3(1) ?2 (1)+ ? ?e ?K 4] 

and so 

/3(1) -3O(0) 4~1 

It follows from (2.11) that iK(1) > 2 and thus, for all sufficiently small e, 

(2.12) t31-()? 

Putting 

(2.13) 03 p3(0) ? 



NONEXISTENCE OF UNIFORMLY CONVERGENT METHOD FOR SEMILINEAR BVP 609 

the difference equation (2.5) can be rewritten as 

2 (&+ J2) (wS (0) + w (2f)) = w. (f) + ( * - f(s2))2 ws(?) 

Then, for all sufficiently small f and some constant mo > 0, from (2.10), (2.13) and 
(2.3), it follows that 

(2.14) 2(3 ? ?2) (wo(0) + wo(2?)) > wo(f) + mofI3 

and, from (2.10), (2.12), (2.13) and (2.3), 

(2.15) 3*2(*+ e2) (wi(0) + wi(2f)) < wi(?) - m(1) 

Consider the difference scheme (Ph), with frozen fitting factor -y, applied to 
problems (P) with the coefficient CS that is 

{ c22 7zs(xi) - Cs(Zs (X))Zs (X) = 0, xi C QN, 
(Ph) 

Zs (?) = 1, Zs (1) = O, 

At the point x1, this can be written in the form 

5(x1) 2ry + ?2(2 - s + szs(xi)) (z(x) (0)) 

where ty - ty(E, h, c5(z5(0)) = a'(E, h, cs(1)) = a'(E, h, 2). Note that ' is independent 
of s. We first show that c-uniform convergence implies ty > 0 for all sufficiently 
small h and c, satisfying 1 = h/E = const. From Ph, it is clear that > > 0, if 
zo(xi) > 0 and 82zo(xI) > 0. 

By the maximum principle, uo (x) > 0, x C (0, 1/4]. Now, by uniform conver- 
gence, 

lus(x) - zs(x)I < p(h), 

where A(h) -> 0 as h - 0. Hence 

Zs (xi) > 0, xi C (0, 1/4], h sufficiently small. 

It remains to show 62zo(xI) > 0. To do this rewrite the equations for us and z5 
in scaled coordinates 27(x) = x/E thus: 

dr,2 U5(n)-Cs (- s (i))is (n) 0, 

uts(O) 1 , us( /E) = O 

and 

762 Zs (71i -Cs e5s ((i ))is (,qi) - 0, 

Zs (0) I I is s(I /) = O 

Recalling I = h/c, we have 

62Zs (,) = {ZS (rqi + 1) -2s (2(i) + s (i - 1)}/12 

- {s(7ri + 1) -fis(27li + 1)}/12 - 2{ s(27i) -Us(7)}/1 

+ Zs (r,- 1)i-s (rq -1) }/12 ? iits (t5i) 

(2.16) > -4p(h) /12 + 62ts (i) ). 
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Now 
(2.17) 

62ii (T1i) =d us (7i + Oli) = Cs (ts ) Uts (7i + Oi ) > aiis (7i + Oi ) I? < oi < 1. 

Using (2.4), we have 

(2.18) iis (n) - ws (r) Q =u (x) - v (x) ? u(E), 

where v(E) - 0 as E - 0. We now restrict our attention to the case required, that 
is uo(x) . We have 

wo(n1 + 01) = vo(xi/e + 01) < vo(2h/E) = vo(21) - 

Using (2.18), we now have 

iio(71 + 01) > wo(q1 + 01) - u(E) = e-2v/-V(E) 

Thus, for E sufficiently small, 

(2.19) iio(m1 + 01) > e-41 > 0. 

Hence, from (2.16), (2.17) and (2.19), since 1 is a constant, we have 

82Zo(m1) >-4A(h)/12 + e-41 > 0 

for h sufficiently small, and the required result, a > 0 follows. 
The argument is now divided into the two possible cases a > O* and a <,3*. 
Suppose first that ty > f* and consider problems corresponding to s 0. Then, 

for all sufficiently small X, using the assumption of E-uniform convergence, (2.4) and 
(2.14) we obtain 

Z0(XI) 2(1 ? ?2) (Z0(X2) + ZO(0)) 

- 2(y + ?2) (UO(X2) + Uo(0) - jt(h)) 

- 2(> ? ?2) (VO(X2) + Vo(0) - V(E) - t(h)) 

2Q? ? ?2) (WO(X2) + Wo(0) - (E) -(h)) 

> 2( w 
2) [2(3?+?) (WO(f) + mof') - >(E) - 8(h)] 

? Wo(?) + mo?3 - v(E) - u(h) 

? Uo(xI) + mO?3 - v(E)- (h)- 

since ty > p implies that z(p*+e2+) > 1. Fixing f sufficiently small, and considering 

the sequence of problems corresponding to E = h - 1 , it follows that 

ZO(XI) - uo(xi) > m 
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for all sufficiently small h, which contradicts the assumption of c-uniform conver- 
gence of the method for these problems. 

On the other hand if !< p3*, using the assumption of c-uniform convergence, 
(2.4) and (2.15), a similar argument for problems corresponding to s = 1 gives for 
all sufficiently small f that 

Zi(x1) 2y ? ?2(1 ? z1(x1)) (ZI(x2) + ZI(0)) 

< U1() -vm03 ? v(6) ? /l(h), 

since y < 3* implies that zyp+e2< 1. 

Again, fixing e sufficiently small, and considering the sequence of problems cor- 
responding to E =h I ,it follows that 

U1(xi) - z1(xi) > mot3-V(E) - ji(h) >-MO 

for all sufficiently small h, which contradicts the assumption of c-uniform conver- 
gence. 

Thus it has been shown that the assumption of c-uniform convergence leads to 
a contradiction in all cases, which completes the proof of the theorem. D 

3. NUMERICAL RESULTS 

We shall now examine numerically a number of fitted schemes on uniform meshes 
for the continuous problem (P) and related problems with two boundary layers. We 
shall first consider schemes of the form 

J c7i8zZN(Xi) - C(ZN(Xi))ZN(Xi) = 0, Xi C QN, 
(Ph) 

ZN(0) = 1, ZN(1) =0, 

where -Yj _y(c, h, C(zN(0))) is the frozen fitting factor. Note that, in order to pre- 
serve consistency with schemes given in the literature, this and subsequent problems 
have an E as coefficient of the second derivative, rather than the c2 considered pre- 
viously. 

The nonlinear finite difference method (Ph) is linearized using a continuation 
method of the form: 

UN=UNNEibu(X, tj)- c(UN(X, tj-1))UN(X, tj) - D-UN(X, tj) = 0, j = 1, . K, 

U N(0, tj) = u(0), U N(1, tj) = u(1) for all j, 

UN (X, 0) = Uinit (X), 

where -yi _y(c,h,C(uN(O,tj-1))) =_ (c,h,c(u(O))) is the frozen, fitting factor. 
Various starting values ui,it(x) are chosen. The number of iterations K and the 
choice of uniform time step ht = tj-tj-, are discussed below. With the definition 

e(j) _ max IUN(Xi, tj) -uN(xi, t _1) /ht, for j = 1, 2, ... , K, 1<i<N 
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the time step ht is chosen sufficiently small so that 

(3.1) e(j) < e(j-1), for 1 < j < K, 

and the number of iterations K is chosen such that 

(3.2) e(K) < TOL 

where TOL is some prescribed small tolerance. 
The numerical solution is obtained as follows: 
Start with ht = 0.0625. If, at some value of j, (3.1) is not satisfied, then halve 

the time step until (3.1) is satisfied. Continue the iterations until either (3.2) is 
satisfied or until K = 90. If (3.2) is not satisfied, then repeat the entire process 
starting with ht = 0.03125 . 

The resulting values of UN(x, K) are taken as approximations to the solution of 
the continuous problem. 

The problem is solved on a sequence of meshes, with N = 8, 16, 32, 64,- 128, 
256, 512, 1024 and for E = 2', n = 1, 2, . jrej,, where jred is chosen so that E is a 
value at which the rate of convergence stabilizes, which normally occurs when, to 
machine accuracy, we are solving the reduced problem. 

The errors JUN(xi, K) - u(xi) are approximated on each mesh for successive 
values of E by es,N(i) = IUN(xi, K) -U (xi, K) 1, where U' (x, K) is defined by linear 
interpolation on each subinterval [Yj-i, Yj] by 

U' (x,K) = u*(yjy,K) + (u*(yj,K) - u*(yj 1,K)) 
X Y j-l < j < 1024, 
Yj - Yj-1 

where the nodal values {u*(yj, K)} 1%24 are obtained from the solution of the finite 
difference method L h with N= 1024. For each E and each N the maximum nodal 
error is approximated by 

E,N maxeE,N(i) 

For each N, the E-uniform maximum nodal error is approximated by 

EN= max EE,N- 

A numerical method for solving (P) is E-uniform of order p on the mesh QN 
{ixi i= 0,l,1... INJ if 

sup maxI u(x)-UN(X, K) I < CN-P, 
0<E<1 QN 

where u is the solution of (P), UN is the numerical approximation to u, C and 
p > 0 are independent of E and N. An approximation to p, the E-uniform rate of 
convergence, was determined using a variation of the double mesh method described 
in [6]. This involves calculating the double mesh error 

DE,N = max UN(xi, K) - UN(Xi K)l, 

which is the difference between the values of the solution on a mesh of N points 
and the interpolated value for the solution, at the same point, on a mesh of 2N 
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points. For each value of N the quantities 

DN -maxDF,N, PN = 1og2 

are computed. The values of PN are the approximations to p. 
We now present numerical results, first for a problem of the form (P), and 

secondly for a generalization of that problem. All calculations were carried out 
in double-precision FORTRAN 77 on an Hewlett-Packard/Apollo 730. The first 
scheme we consider is the unfitted central difference scheme, where -yi _ 1, and 
the second is a modification to the single layer case of the constant fitting factor 
version of the scheme of Miller [11] proposed in [2, Ch. 10, p. 156]. This gives a 
frozen fitting factor method for the problem 

Eu"(x) - c(u(x))u(x) = 0, x E Q 

with boundary layer at x = 0. In this case the frozen fitting factor is given by: 

_ c(u (0)) h2-sn2V/c(u(0))h (3.3) Vi = ( ( )sinh- _ h 

Table 1 gives uniform errors and rates of uniform convergence for the centered 
difference method for the problem 

(3.4) E u(x)-u-U2 = O, x E (Oil) 

dx2O u(O) = 1, u(l) = 0. 

TABLE 1. Maximum errors EN and rate of convergence PN for the 
Centered Difference scheme 

Boundary Conditions: u(0) = 1.0, u(1) = 0.0 
Initial Guess: Uinit = U(X) = U(O) + (u(l) - U(0))x 

N 8 16 32 64 128 256 
EN .048165 .048145 .048089 .047872 .047021 .043776 
PN .00 .00 .00 .00 .00 .00 

Tables 2 and 3 give errors and rates of uniform convergence for the scheme with 
frozen fitting factor given by (3.3). 

We now show numerically that the result of Theorem 2.1 also holds for fitted 
methods with frozen and non-frozen fitting factors for the problem 

{P2) Eu"() - c(u(x))u(x) 0, x E Q, 
(P2) u(0) = A, u(1) B, 

where c satisfies (2.1). This has, in general, boundary layers at both x = 0 and 
x = 1. The nature of these boundary layers and the behavior of the derivatives of 
u in the neighborhood of x = 0 and x = 1 is similar to that of the layer in (P). 
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TABLE 2. Errors E,N and EN for Frozen Fitting Factor scheme (3.3) 

Boundary Conditions: u(0) = 1.0, u(l) = 0.0 
Initial Guess: Uinit = U(X) u(O) + (u(l) - U(0))x 

Number of Mesh Points N 
6 8 16 32 64 128 256 512 

1/ 2 .000468 .000120 .000030 .000008 .000002 .000000 .000000 
1/ 4 .000819 .000212 .000054 .000013 .000003 .000001 .000000 
1/ 8 .001460 .000391 .000101 .000025 .000006 .000001 .000000 

1/ 16 .002606 .000743 .000196 .000049 .000012 .000003 .000001 
1/ 32 .003724 .001429 .000383 .000098 .000024 .000006 .000001 
1/ 64 .003293 .002592 .000739 .000194 .000049 .000012 .000002 

1/ 128 .003525 .003719 .001427 .000381 .000097 .000023 .000005 
1/ 256 .007963 .003289 .002590 .000737 .000192 .000046 .000009 
1/ 512 .011277 .003529 .003715 .001423 .000377 .000092 .000019 

1/ 1024 .006868 .007967 .003283 .002580 .000728 .000183 .000037 
1/ 2048 .001845 .011277 .003528 .003699 .001404 .000358 .000074 
1/ 4096 .000195 .006864 .007969 .003261 .002544 .000692 .000146 
1/ 8192 .000006 .001842 .011269 .003521 .003637 .001331 .000285 

1/ 16384 .000001 .000194 .006851 .007970 .003177 .002400 .000548 
1/ 32768 .000000 .000006 .001834 .011239 .003491 .003395 .001046 
1/ 65536 .000000 .000000 .000192 .006803 .007966 .002861 .001852 

1/ 131072 .000000 .000000 .000006 .001801 .011111 .003362 .002516 
1/ 262144 .000000 .000000 .000000 .000183 .006609 .007868 .001833 
1/ 524288 .000000 .000000 .000000 .000005 .001673 .010508 .002760 

1/ 1048576 .000000 .000000 .000000 .000000 .000151 .005824 .006751 
1/ 2097152 .000000 .000000 .000000 :000000 .000003 .001255 .007748 
1/ 4194304 .000000 .000000 .000000 .000000 .000000 .000082 .003395 
1/ 8388608 .000000 .000000 .000000 .000000 .000000 .000001 .000503 

1/ 16777216 .000000 .000000 .000000 .000000 .000000 .000000 .000021 
1/ 33554432 .000000 .000000 .000000 .000000 .000000 .000000 .000000 

EN .011277 .011277 .011269 .011239 .011111 .010508 .007748 

TABLE 3. Maximum errors EN and rate of convergence PN for 
Frozen Fitting Factor scheme (3.3) 

Boundary Conditions: u(0) = 1.0 , u(1) = 0.0 
Initial Guess : Uinit =u(x) u(0) + Ml() - u(0))x 

N 8 16 32 64 128 256 
EN .011277 .011277 .011269 .011239 .011111 .010508 
PN .00 .00 .00 .00 .00 .00 

We present numerical results for the analog of (3.4) above, that is 

(3.5) Es u(x)-u-U2 = O, x E (Oil) 

dx2O 
u(0) = A, u(l) = B. 

We first consider the method proposed in [2, Ch. 10, p. 159]. This gives a piecewise 
constant frozen fitting factor method for the problem (P2). The fitting factor is 
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given by: 

c (u (0)) h2 sih2c(u(0))h 
tYi = ( ))sinh -2 0X < Xi < 1/2, 

(3.6) ~~c (u (1)) h2 sih2Vc(u(1)) (3.6) V = (())sinih 2 1/2 < xi < 1. 

Table 4 gives uniform convergence rates for this scheme. 

TABLE 4. Maximum errors EN and rate of convergence PN for 
Frozen Fitting Factor scheme (3.6) 

Boundary Conditions: u(0) = 0.5, u(1) = 0.7 
Initial Guess : Uinit = u(x) = u(O) + (u(1) - u(O))x 

N 8 16 321 64 128| 256 
EN .006028 J.006027 .006024 .006010 .005952 .005669 
PN .00 .00 .00 .00 .00 .00 

Table 5 gives rates for the scheme of Miller [11] discussed in [2, Ch. 6] which has 
the following (non-frozen) fitting factor: 

c(u(xi))h sinh2 2 c ))h 
(37) sn 

TABLE 5. Maximum errors EN and rate of convergence PN for the 
scheme of Miller (3.7) 

1 Boundary Conditions: u(O) = 0.5, u(1) = 0.7 
Initial Guess: Uinit = U(X) = u(0) + (u(l) - U(0))x 

N 8 16 32 64 128 256 
EN .007895 .007891 .007882 .007846 .007705 .007163 
PN .00 .00 .00 .00 .00 .00 

As can be seen from these tables, none of the standard fitted schemes from the 
literature, on uniform meshes, are uniformly E-convergent for the test problems. 
As remarked in the introduction, numerical methods, E-uniform in the maximum 
norm, were constructed in [7] for a class of semilinear problems, which includes the 

class of problems considered here. These use classical finite difference operators 
on special piecewise-uniform meshes condensed or refined in the boundary layers. 
Thus c-uniform methods can be constructed on special piecewise uniform meshes 

although it is not possible on uniform meshes. 
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